The Effect of Phosphodiesterase Inhibitors on BAPN-Induced Aortic Dissection

Sam C. Tyagi, MD FACS FSVS RPVI

Assistant Professor of Vascular and Endovascular Surgery

Department of Surgery

University of Kentucky

Aortic Dissection Mouse Models

- Extracellular Matrix
 - Fibrillin-1, Fibulin-4, Lysyl oxidase,
 ADAMTS1, Col3a1, Col1a1, Biglycan
- SMC proteins
 - ACTA2, MyH11, TCS-1, PRKG1, LRP1
- TGFβ related proteins
 - TGFβ2, TGFβ receptor 1, TGFβ receptor 2, Smad4, Smad3

Aortic Pathology

Aortic Pathology

Cilostazol Attenuates Angli AAA

BAPN: **B-aminopropionitrile**

Irreversible inhibitor of LOX

LOX: Lysyl Oxidase Model

LOX is a copper-dependent amine oxidase that is essential for cross-linking of collagen and elastin.

BAPN-induced Aortic Dissection in Mice

- BAPN
- 0.5%, drinking water
- Start: 3 weeks of age

Hypothesis: Phosphodiesterase Inhibitors Decrease the Effect of BAPN Induced Aortic Dissection

- Platelet inhibition
- Improved endothelial function and repair
- Anti-inflammatory

Decreased
Severity and
Mortality of BAPN
induced AoD

Aim 1: To determine if Cilostazol PDE3i decreases BAPN induced AoD

Aim 2: To determine if Sildenafil PDE5i decreases BAPN induced AoD

Experimental Design – 85 mice - 1 month

Mice sacrificed at 4 weeks

C & S BAPN S1a + S1b Survival

Future Plans

- Verify drug delivery with ELISA aortic tissue
- Severity Score
- 3-month study survival
- Ultrasound measurements of progression of Aortic disease in vivo
- Characterize Aortic Tissues by Histology

High Frequency Ultrasound in Mice

Micro CT $-20 \mu m$ resolution

Funding Sources of this research:

University of Kentucky Alliance Initiative – Aortic Alliance

American Heart Association (AHA) – Strategically Focused Research Networks (SFRN) Grant – Vascular Disease at University of Kentucky

Early Faculty Career Development Award Vascular and Endovascular Surgery Society

The Lab

Deborah Howatt
Jess Moorleghen
Michael Franklin
Hasashi Sawada
Satoko Ohno-Urabe
Jacob Hubbuch

Masayoshi Kukida Jeff Chen Chia-Hua Wu Shayan Moradi Yanxiang Gao Dien Ye

Deborah Howatt

Michael Franklin

Jacob Hubbuch

Hong Lu, MD PhD

Alan Daugherty, PhD DSc

